Robust Multi-modal and Multi-unit Feature Level Fusion of Face and Iris Biometrics

نویسندگان

  • Ajita Rattani
  • Massimo Tistarelli
چکیده

Multi-biometrics has recently emerged as a mean of more robust and efficient personal verification and identification. Exploiting information from multiple sources at various levels i.e., feature, score, rank or decision, the false acceptance and rejection rates can be considerably reduced. Among all, feature level fusion is relatively an understudied problem. This paper addresses the feature level fusion for multi-modal and multi-unit sources of information. For multi-modal fusion the face and iris biometric traits are considered, while the multi-unit fusion is applied to merge the data from the left and right iris images. The proposed approach computes the SIFT features from both biometric sources, either multimodal or multi-unit. For each source, the extracted SIFT features are selected via spatial sampling. Then these selected features are finally concatenated together into a single feature super-vector using serial fusion. This concatenated feature vector is used to perform classification. Experimental results from face and iris standard biometric databases are presented. The reported results clearly show the performance improvements in classification obtained by applying feature level fusion for both multi-modal and multi-unit biometrics in comparison to uni-modal classification and score level fusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Face and Iris Biometrics Using a Stand-off Video Sensor

by Ryan Connaughton Multi-biometrics, or the fusion of more than one biometric modality, sample, sensor, or algorithm, is quickly gaining popularity as a method of improving biometric system performance and robustness. Despite the recent growth in multi-biometrics research, little investigation has been done to explore the possibility of achieving multi-modal fusion from a single sensor. This a...

متن کامل

An Empirical Analysis Over the Four Different Feature-Based Face and Iris Biometric Recognition Techniques

Recently, multimodal biometric systems have been widely accepted, which has shown increased accuracy and population coverage, while reducing vulnerability to spoofing. The main feature to multimodal biometrics is the amalgamation of different biometric modality data at the feature extraction, matching score, or decision levels. Recently, a lot of works are presented in the literature for multi-...

متن کامل

Fusion of Face and Iris Biometrics from a Stand-Off Video Sensor

Multi-biometrics, or the fusion of more than one biometric modality, sample, sensor, or algorithm, is quickly gaining popularity as a method of improving biometric system performance and robustness. Despite the recent growth in multibiometrics research, little investigation has been done to explore the possibility of achieving multi-modal fusion from a single sensor. This approach to multi-biom...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Multimodal Biometric System Fusion Using Fingerprint and Face with Fuzzy Logic

Biometric systems have a variety of problems such as noisy data, non-universality, spoof attacks and unacceptable error rate. These limitations can be solved by deploying multimodal biometric systems. Multimodal biometric systems utilize two or more individual traits, like face, iris, retina and fingerprint. Multimodal biometric systems improve the recognition accuracy more than uni-modal metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009